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LINEAR ACCELERATION GUIDANCE FOR LUNAR

LANDING AND LAUNCH TRAJECTORIES

SUMMARY

-~ An approximate analytical soiution to the problem of maneuvering a
spacecraft to reach specified end conditions by finite thrusting in the
vicinity of the moon is presented. The analysis includes all three
dimensions and the acceleration terms in the equations are linearized.
The exampies presented are limited to the planar case. Although in
general the thrusting scheme is varisblz, a constraining relation is
introduced to allow burning time for constant thrust to be calculated.
Similarly, a constraining relation may be introduced which allows & burn-
ing time for a constant thrust angle to be calculated.

The solution is versatile in that it allows variable thrust, constant
S thrust, and constant thrust angle trajectories between specified end con-
ditions.

' $iel

INTRODUCTION

R E I §
H

In order that a spacecraft such as the Apollo Lunar Excursion Module
(LEM) can be guiced during landing, launch, .bort or rendezvoue to & set
of specified end conditions in a manner that is near fuel optim:.l, a set
of guidance equatiuns must be mechanized on board the spacecraft that
will predict the necessary thrust and/or thrust angles. This paper will
present the derivation of a set of equations that are suitable for this
task from the standpoint of guidance and fuel optimum performance.

: In obtaining a solution for the guidance equations, it is desirable
A that several criteris be met:

(1) The equations must be computationally simple.

i, (2) The equations must be suitable for use in as many operational
’ modes as possible.

(3) The equations must yield a solution thet is near the fuel
optimum.

In order to obtain such a set of guidance equations, tne first step
was choosing a suitable approximation to linearize the equations of
notion, To accomplish this, it was assumed that the change in ultitude




of the spacecraft is small compared to the initial radius of the space-
craft. This is similar to assuming a constant gravitational field. The
next step was to soive the two-point boundary value problem explicitly.

The approach taken in this paper in solving the problem is to pre-
scribe that the radiel, tangential, snd out-of-plane components of the
acceleration vary linearly with time. The equations of motion can then
be solved in closed form.

Six parameters are introduced in the three acceleration components
which can be determined in closed form in terms of the six specified end
conditions. These parameters constitute the guidance equations which
will always insure that the spacecraft's trajectory will meet the speci-
fied terminal conditions.

For this acceleration scheme, the equation for the thrust angle is
the same as that for the fuel optimum for a flat central body or constant
gravity field approximation where the fiqal position and velocity are
constrained (ref. 1).

It is also shown that by introducing other constraining relations,
constant thrust and constant pitch angle trajectories can be generated.

LIST OF SYMBOLS

Al’ A2, A3, Ah’ A5 constants defined on page
a Q 2 + a 2 + Q 2
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b (arBr * °’¢ﬁ s ¥ “v" V)
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c By * B¢ + BW
F(r) condition for constant thrust
G(T) condition for constant pitch angle
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&g 3.2 5 constant relating mass to weight in
sec
earth pounds

e 6 R A

et

s

g

i



. s N
Altﬁii,;‘ﬁﬂ % -

B oA

Clog R

- bt

e, YRR AT

r, ¢, V¥

B

8 (with subscripts)

5( )

altitude, feet

specific impulce, seconds

arbitrary constants of integration relaved to
initial conditions

mass

radius of attracting body, feet
polar coordinates defined in Sketch 1
thrust, pounds

time, seconds

velocity, feet per second

characteristic ‘relncity, Vc’ feet per second
weight of spacecraft, pounds

arc length or range along surface of
attracting body, feet

out-of-plane range, feet

initial level of applied acceleration in a
given direction, ft/sec2

thrust azimuth angle, degrees

rate of change of applied acceleration in a

given direction, ft/sec5
denotes variation

angle between thru~t vector and local
herizontal; the pitch angle, degrees

i




" universal gravitaticnal constant times mass of
attracting body, fti/sec2

) T/gEIsme, seconds
T burning time, seconds
(‘) derivative of ( ) with respect to t
()~ derivative of ( ) with respect to T

§Epscrigts

0 conditions when t = O

1L, 2, 3, 4, 5 denotes different A's and K's

r pertaining to radial direction

T conditions when t = 71

] pertaining to ci: cumferential, or x, direction

¥ pertaining to direction perpendicular tor, ¢
plane

DERIVATION OF EQJATIONS

The equations of motion of a thrusting spacecraft in & gravitational
field are:

T
»” 02 12 2 __r_
r-r(g + ¥ sin” ¢) + ig =3 (1)
-g-(reé) - reila sin ¢ cos ¢ -—-r?‘g- (2)
dat m
d(a' 2+ . -T-l
Rrvsin¢)+rw¢cos¢=rm (3)

See reference 2,
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These equations may be solved analytically by prescribing linear
acceleration components: (See sketch 1.)

Tr T

;:55]‘_“6 =G¢r+Brt (“1\
T¢ m

- cos B cos 3 = or,¢ + B¢t ()
T

;? = % cos § sin B = @, pwﬁ (0)

and assuming tha. the change in alt®t.de s small compared to the initiai
radius ro, and that the oubt-o-'-; lauar ogle and its time derivative,
¥ and y. are small.

r=r = constant 4 that:
C

In equation (2), ns.ume that

r2¢2 s.ng cos g < < E% (r°g).

Thie equation, using ‘"' then becom .,

1
4

- »
oy @) = ro(a¢ + B¢t)

Integrating this equu..orn twice,

. 1l 1, .2
g ==K +a2t+35pt. (7) :
r 1 b 278
oL g T :
v [ 1, 1. .3 i
o — = t" - 7
¢_ro L}{2+Klt+2a¢ r,OB¢t] (8) |

Before aprlying initial conditions to (7) and (8), make a change
of variables by defining the range X = Rg. Equations (7) and (8) then

becomn:
; R 1 2
X = ;; [Kl + abt + 5 B¢t ] (9)
- 2 L 14
X = T [52 + Klt +3 abt +Z s¢t ] (10)




where K1 and K, arc constzats of integration.

2

Assuming that r = r = constant and that &231n2¢ << éz,

equation (1) becomes,

T - ; N )
r-r ¢ + a. +Bt (11)

Square both sides of equation (7), and then substitute rofé2 from
(11),

T
o) r

2 10 .
¢-r r + e-a-Brt]
0

SN PR or,t:+(cr.2-1-'ﬁ)t2
-l L T R A R L

(o)

Solvirg for T,

. 2 /
"t 2K. a
e ‘r-ﬁ—+o.--9§+-5-—-9-+a T u.2+K16)t2
by T r r [ @
o] ro (¢] o K
2

u B B

s L85, 8 Y (12)
r lrro

Now, r = h + K, where h 1is the altitude of che spacecraft and R
is the radius of the attracting body. Using % =h and by defiring,

\3’
I
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eguation (12) becomes:

2 3 i
= A+ At + A3t + AT+ A5t (13)

Now integrate (13),

mrchmas § g s e he e S e

; 5 ’ 5
N = + _ ' - )
h=K,+ + A2t +3 A 7+ 1 A! t + A5t (14)

e

]

£ e 1,,2.2 .3, 1 ,. b

B

2 1 ,.5, 1,46
% where K5 and Ku ere constants of integration.

% +

f?‘ Define the out-of-plane range, Z =7 sin ¢ sin ¥

32

o For small angles V , and assuming I = ro = constant this becomes,
s.¢ ‘

=¢ro sin_b

and the out-of;-plane velocity btecomes,
--\lrro sin ¢ +¢¢_r° cos @

Substituting this last expression into (3) , and again assuming
r=r_ = constant, {(3) becomes,

d " N o _
s (z - row cos @) + r_ V8 cos = ay + B,‘.‘t
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Differentiating the first term and using the definition X = Rg, the

lacst eguation reduces to:
.. rC d . ‘
Z+ 2y ) =a +8t 16)
AT (X cos ¢) Qﬁ BW (16)

Since V¥ is a small angle and if X does not. change too rapidly

with time, the second term on the left may be neglected and (1€) becomes:

Equation (17) may ncw be integrated twice to give:

‘ 4 - f
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% "1 Y iwkﬁx}ﬂ R ey, u.‘;%‘;{.w ‘gu“,ﬁ‘gﬁvﬁ;‘ﬁ‘% ity $
473 L » j%/!‘

o _ J-" 2
R R A1 (18)
_ 1 .2 1,..3

Equasions (9), (10), (14), (15), (18), =nd (19) are the equations
of motion of the spacecsraft. Now apply the initial conditions to
evaluate X. through K When t = 0, X—X,X X h-h h-ho,

L1 6’
Z = ZO Z = Zo' The constants of 1ntegrat10n are f:een to be:
To . o : 5
}L_L=-i‘7xo, K2='1'{’ K5=ho, Kh=ho’ I:5=Zo, andK6=Zo.

The equations of motiorn are now determined except for the thrust

parameters a.¢, 8 P B, «, and B v which determine the thrust

history; that is, the thrust magnitude and direction. The six equations

le
3
i
L)
b3
¢
£
i

of motion may be solved for these thrust parameters in terms of final
conditions., When t =7, X = XT, X = X'r’ h = }!T, h = h‘r’ Z = Z'r’ and
Z = ZT. After considerable manipulation the equations for the thrust
parameters become: —
‘ 2%l ‘43
-7 -ﬁ-l- - XT) + 2){0 + XT] 7 (20)
6 rO 2 4 S S "
f3¢ 2 R|T \xq - XT) +X +X - (21)
1 ] o



B 952 L ihy. 2,0 2,2k
*r 5 2% *r-h)-Fr-r -
r K
o
A N
- (22)
p = - 2a §2 2, oo )+ éi-'ﬁ +0 ) - A, T
IJr ¢R 3\0 T 2 o T’ 3
T T
2 4 3 .
" AT g AT - 5hT o (23)
« =- 2 2»(2 -2)+22 +%2 (24)
¥ i1 "o T o r
"6[-2 '0’ » .-
BW = TZLT (ZC - Z‘T) + 2 + Z’T] (25)

For a specified set of initial and terminal conditions the bouudary
value problem is now completely solved.

The thrust azimuth angle, B, is given at &ny time by dividing
equation (6) by (5),
T, a + Bt
V/m .Y BV (26)
+
T¢/m a B¢t

tan B =

The thrust pitch angle, 6, is given at any time by dividing (4) by
(5) and using (26),

i
1 Tr/m o cz.r + B‘t
cos B T¢/m cos B a.¢ + B¢t

ten 0 = (27)

The total acceleration, 3% is given at any time by,

CREROR)

2 2 é
(a:.r + Brt) + (u.¢ + B¢t) + (0"4" + th)
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or,

(28)

H 3
"
®
-+
o
“"
+
(¢
c.-

n

vhere,

o’
Hi

: 2(a.rﬂr + a¢B¢ + Q'V'BW)

2 2 2
c—ﬂr +E¢ +B‘3’

Tre total acceleration in (28) is now used directly in the definiticn
for ciaracteristic velocity, or performance index, of a given trajectory.

v, = [T(g)dt = U[det (29)

Performing the integration equation (29) becomes:

2 7 1 b
_bac - b '\/a+b'r+c1'i+'r e + 5 —
Ve = 805/2 1n v— 2 Vg

c
Ve +igE

2ct + b 2 by
+ G /2 tbT+er - e (30)

Since a, b, and c are dependent only upon the initial and final
conditions and the burning time T, the characteristic velocity is related
only to the burning time once the end conditions are specified. In most
cases, 1t is desirable to minimize Vc subject to certein constraints.
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THRUSTING MODES

Fiver a complete set of initial and terminal conditions, there
exists an infinity of trajectories that will satisfy the end conditions

.- If a vurning time is specified, the trajectory is uniguely defined. In
’ some cases, a burning time will be chosen that will minimize VE

Two
imrortsnt alte nate cases of course are, (1) choosing the burning time
50 that a constant thrust magnitude trajectory can be obtained, and

(2) chocsing the burning time so that a trajectory with a constant value
¢f 6 1is obtained.

Case a: Minimum Vc' To obtain the burning time for minimum Vc,

thie derivative of VC with respect to burning time may be set egual to
zero, and the resalting relation solved for <. This value of T must
then te further investigated to determine if it yields a maximum, minimum,
or an inflection point. This could be done but would be difficult, since
Vc is a very complicated function of 7. It is much easier from the
standpoint of mathematical complexity to solve (29) nume:r.cally by just
evaluating it for a wide range of +t and then louxing for the minimum

on a plot of V., versus T. Once the optimum value c: 1T is ovtained,
a., 8, @ ﬁ¢, L BW can be calculated from (20) tr:rough {2:.);

then the trajectory wit: minimum Vc based on these vuluc~ is culcu-

lated rrom (9), (20), (1%), {(15), (18), and (1S).

Case b: Constant Thrust Magnitude.

Equation (28) may be shown to
yield & constant thrust magnitude by comparing it to the acceleration

relation for constant thrust.

The acceleration for constait thrust may
be oitained by considering the basic relation between thrust and rate
chan e of mass,

o
0

T =« 8p Isp m = mv

Q/m
. T fo)
For constant thrust, m= mo (L - vt), v = el e

Lt

1 -t
éi g Isp
K Equacing this to (28),
N T
% T 2 _ /ino e
i m«-\,a+bt+ct =Tt (z1)
?
t
%
\
{

{
{
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For a specified set of end conditions equation (51) may be solved
for the burning time T, since a, b, and ¢ are functions of 7, at any
time t. In particular at time t = 0, (31) becomes Va = 'l‘/mo .

2
But since a = a¢ + u%eﬁ-uwz, the relation to be solved for T 1is,
I

a = a.¢2 + q.re + a,va = (?/mo)2 - (W ) gE2 (32)

o

To determine the proper constant thrust level, eqguation {32) may be
solved simultaneously with the characteristic velocity equation for
constant thrust, V, = - gy Isp in (1 - v1).

Equation (32) must be solved for 1 by an iterative process.
Define the function,

2
2 2 2 [V 2
F(r) = o +a "+ c:,‘y - (w ) gg =0 (33)

and its derivative,

d . _ . .
EF'F(T) =F(1) = 2((1.’”(:,¢ + aba}) (34)
The iteration process,
F(Tn)
"ot " Tn °F Zvn) (35)

is then set up to determine r.

BEquation (35) has been observed tc converge quite rapidly for the
constant thrust burning time.

Case c: Constant 6. Assuming B 18 small so that cos B~ 1,
the time derivative of equation (27) for & is,

d = g!EE.:.gEE% cos” '36)
(o, +B,t) '

For 6 to be constant, 8 = 0, 6. (36) yields,

e

G‘QBr - a'rB¢ = 0 (57)

g
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liow define the function,

G(T) = aﬁgr - arﬁ¢ =0

and its derivative,
6"(r) = (e8] + /) - (ap] +a’B)
The iterative solution for the ourning time for constant 6 is,

G(Tn)

Tl = "0 T @ (7))

n
USE OF THE ANALYTICALLY DERIVED THRUST PARAMETERS FOR GUIDANCE

Equations (20) through (25) give analytical expressions for the
thrust parameters. They were derlved on the basis of a model that
approxir.ated the inverse square gravity field. These egquations may bLe
considered as guidance equations which will guide the spacecraft uring
various maneuvers. The performance of these guidaence equations can ie
evaluated by a simulation that is programed on a digital computer. A
trajectory program which numerically solves equations (1), (2), and
(3) to predict the position and velocity of the spacecraft at any time
is a basic component of the simuletion. A guidance program which contin-
ually computes the thrust and its direction by solving equations (20)
through (25) is the other basic component of the simulation. The
instantaneous thrust vector computed by the guidance program depends
only upon the present position and velocity of tl.e spacecraft and the
specified terminal corditions.

The problem of combining the two programs for variable thrust is
straightforward. Both sets of c¢quations are given the same initial
conditions. The final conditions are also substituted into the thrust

parameter relations, equations (20) through (25). a., B o B¢, %

ﬁ, are computed with these conditions and are used to calculate 0, (3,

ani (T/m) from equations (26), (27), and (28), for the first step. The
output, x, X, h, h, Z, Z, of the first integration step are then used
as the initial conditions in equations (20) through (25) to compute €,
B, and (T/m), for the next integration step. The calculation thus pro=-
ceeds to the final conditions of the problem.

If constant thrust or constant 6 1is desired the burning time iz
updated by equations (35) or (38), just as 6, B, and (T/m) are in the
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variable thrust case discussed above. T 1is updated prior tc each
integration step using the output from the previous step as the initial
conditions. The computation procedure can best be visualized by re
ferring to the block diagram in Sketch 2.

EXAMPLES OF CALCULATIONS

Several examples will now be given to illustrate the variocus modes
in which the computation scheme may be operated. In all of the following
examples, the calculations were limited to the two-dimensional case.

(a) Variable thrusi with minimum characteristic velocity:

This mode is illustrated by a descent trajectory fram
approximately 50,000 feet to 10,000 feet above the lunar surface.
The burning time wes 274 seconds and was calculated by solving
av

7559 numerically. The V_ was 4,833 feet per second and the total

range was specified as 169.7 n.mi. Time histories of the variables
are shown in figures (la) through (1f).

o Y e I

b 0

(b) Constant thrust:

This mode is also illustrated by a lunar descent trajectory.
The initial and final conditions are the same as in the variable
mode discussed in (a) sbove. The burning time was 299.3 seconds
and the V_ wvas 4,883 feet per second. The time histories of the

variables are shown in figures (2a) through (2e). Also plotted for ;
comparison is & trajectory having the same boundary conditions,

that was calculated from a calculus of variations optimum program.
This optimum trajectory had a burning time of 300.90 seconds with
a V, of 4,883 feet per second. The VE of the guided constant

thrust trajectory was less than that for the optimum because of
the slight difference in burning time between the two. It should
be noted here that the two trajectories flown are different, except
for thﬁ boundary conditions. The thrust-to-initial-weight ratio
was O.4.

(¢) Constant thrust launch with en error analysis for variations in
the thrust viztor:

This trajectory had an initial altitude of 1,000 feet and an
initial vertical velocity of 100 feet per second. The final
conditions were pericynthion altitude of 50,000 feet, with orbital
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velocity of about 5,555 feet per second. The totel range was 92.92 n.mi.
The guided trajectory is compared with the optimum in table I. Additional
calculations of this trajectory were made perturbing independently the
thrust magnitude T and thrust direction 6 by small amounts. The
effect of these perturbances are given in table II. It is evident from
this table that the end conditions are not seriously affected by 1.0 to
5.0° misalinements in thrust direction, and 1.0 or 2.0 percent variations
in thrust magnitude. The end condition most affected was the range.

CONCLUDING REMARKS

An approximate analytical solution to the problem of maneuvering a
spacecraft to reach specified end conditions by finite thrusting has
been presented. The feasibility of using this solutien to guide the
spacecraft to a specified final state has been demonstrated. Further,

: it has been shown that by the introduction of certain constraining

. relations that zonstant thrust and constant thrust angle trajectories

: mey be flown. The guidance equations obtained from the analytical
solution have been shown to be computationally simple; versatile, in :
that several operational modes arc possible; and economical in that they '

o guide the spacecraft along a trajectory that is near the fuel optimum.

e :

RN s e ]
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TABLE TI.- COMPARISON OF FINAL CONDITIONS BETWEEN AN
OPTIMUM CONSTANT THRUST LAUNCH AND A GUIDED

LAUNCH; T/wo = 0.6; ISP = 315 sec.

Initiel Final) Conditions
Conditions Optimum Guided
x, feet e 564,573, 4 562,982.0
h, feet 1,000 49,957.94 «",956.62
=, fps 0 5,558.02 5,558.93
h, fps 100 0.08257 0.26230
V. fps 5,775.25 5,778.12
T, sec 227.916 228.00
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Sketch 1; Geometry of ¢ tarusting trajectory in a gravitational field
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Fig 1

(f) Thrust as a function of time
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